

Comparison of Three Numerical Approaches for Modeling Poly-Disperse Dense Particulate Flows

Shailesh Ozarkar Jay Sanyal Feng Liu Mohan Srinivasa Markus Braun

Overview

- Introduction and motivation
- Polydisperse particulate flow modeling approaches
- NETL/PSRI Bubbling Fluidized Bed challenge problem
- Results
- Summary

Introduction and motivation

- Widespread occurrence of polydisperse particulate flows
- Modeling platform for polydisperse particulate flows is continuously evolving
- Validation of models for determining
 - range of applicability
 - capability in predicting key flow features under complex conditions and simplifying assumptions
- Ongoing validation efforts
 - Investigation of particle segregation in Circulating Fluidized Bed
 - NETL/PSRI Bubbling Fluidized Bed challenge problem

NETL/PSRI Bubbling Fluidized Bed challenge problem

Euler-Granular with inhomogeneous population balance model

Eulerian-Lagrangian Dense Discrete Phase Model (DDPM)

Eulerian-Lagrangian Discrete Element Method (DEM)

(Available in ANSYS Fluent R14.0)

Modeling approaches for dense particulate flows

Eulerian-Eulerian

- Population balance equations for changes in particle size distribution
- Aggregation and breakage kernels¹, and particle phase stresses based on kinetic theory of granular flow
- Solution methods of Population Balance Equations
 - Inhomogeneous Discrete (available in ANSYS Fluent 13.0)
 Extension of standard discrete model to multiple discrete phases
 - DQMOM (beta feature in 13.0)

Transport equations for weights and nodes of quadrature approximation instead of moments of number density function

¹ (Fan et. al. 2004)

Modeling approaches for dense particulate flows

- Eulerian-Lagrangian
 - Dense Discrete Phase Modeling (DDPM) framework:
 Extension of Discrete Phase Model (DPM) to account the effect of disperse phase volume fraction on continuous phase

NETL/PSRI Bubbling Fluidized Bed challenge problem (2010)

- Predicting the differences in fluidization behavior with different bed depths and fines content
 - Bed expansion
 - Gas-streaming
 - Bubbling characteristics
- Challenges
 - Wide particle size distribution
 - 10 micron to 300 micron particles
 - Superficial gas velocity far beyond minimum fluidization velocity
 - 75 to 150 times minimum fluidization velocity
 - Geometry details including air distributor, primary and secondary cyclones

Geometry and test conditions

Test Conditions

	Fines Content, % Less		Superficial Gas Velocity	
Case	Than 44 micron	Static Bed Height	at Bed Bottom	Air Distributor
	% < 44 micron	Hstatic, ft (m)	Ug, ft/s (m/s)	Туре
1	3	12 (3.66)	1 (0.3)	Pipe Manifold
2	3	4 (1.22)	1 (0.3)	Pipe Manifold
3	3	8 (2.44)	2 (0.6)	Ring Sparger
4	12	8 (2.44)	2 (0.6)	Ring Sparger

BFB geometry

Experimental Measurements

- Differential Pressure (DP) fluctuations across entire bed and 24 inch section
 - Mean of DP corresponds to average solids mass
 - Std. Dev. of DP indicates fluidization quality
 Smaller values uniform fluidization
 Larger values poor fluidization or gas streaming
- Radial profile of bubble void fraction

- Mesh generated on complete geometry as well as on truncated geometry (no cyclones)
 - Appropriate boundary conditions applied in truncated geometry simulations to maintain solids inventory

Complete Geometry

Truncated geometry
CutCell mesh

ANSYS Results

- Eulerian-Eulerian and Eulerian-Lagrangian Model results are presented in following order
 - Eulerian-Eulerian Model (Euler-Granular with Population Balance)
 - Case 3
 - Eulerian-Lagrangian Model (DDPM)
 - Case 1 and Case 2 effect of bed depth
 - Case 3 and Case 4 effect of fines content

Case settings: Euler-Granular with population balance model

- Inhomogeneous discrete and DQMOM
 - Two granular phases plus 11 size classes (inhomogeneous) and three granular phases (DQMOM)
 - Granular kinetic theory based breakage and aggregation kernels
 (Fan et. al. 2004)
 - Modified Gibilaro and Foscale drag law
 - Rosin-Rammler representation of particle size distribution
 - First order discretization in time and space

198000

- Time step 0.001 sec
- Time interval of averaging of results
 80 sec
- Typical wall-clock time to
 8 hrs on 20 processors

simulate 1 sec of flow time

Results: Euler-Granular with population balance model

Case 3: 3% fines, Static bed height 8 ft
Axial Pressure Gradient Profile

Results: Euler-Granular with population balance model

Case 3:3% fines, Static bed height 8 ft
Inhomogeneous discrete

Case settings: Eulerian-Lagrangian (DDPM) model

- Granular kinetic theory based treatment of particle collisions
- Wen and Yu drag law
- Rosin-Rammler representation of particle size distribution

Computational cells
 91000

• Time step 0.001 sec

Number of parcels tracked ~ 1 million

Time interval of averaging of results
 10 sec

Typical wall-clock time to
 40 min on 20 processors
 simulate 1 sec of flow time

Results: Eulerian-Lagrangian (DDPM) model

Effect of bed depth on fluidization behavior

Static Bed Height (H)

Case 1 12 ft

Case 2 4 ft

- 3% fines content in both cases
- Complete geometry considered for both cases
- Air distributor type pipe manifold
- Deeper bed has a tendency to exhibit gas streaming (larger fluctuations in DP) compared to shallow bed (Issangya et. al. 2007, Karimipour & Pugsley 2010)

Results: Axial Pressure Gradient Profile

Results: Mean and Std. Dev. of Differential Pressure (DP) across entire bed and 24 inch section

Fig. 1

Fig. 3

Fig. 2

Fig. 4

Results: Effect of bed depth on fluidization behavior

Std. Dev. of Differential Pressure (DP) across entire bed Case 1: H = 12 ft and Case 2: H = 4 ft

 Deeper bed has a tendency to exhibit gas streaming (larger fluctuations in DP) compared to shallow bed. DDPM model qualitatively predicts the trend as observed in experiments.

Results: Animations

Case 1

Contours of volume fraction of particles

Particle traces colored by particle ID

Results: Effect of fines content on fluidization behavior

Fines Content

Case 3 3 %

Case 4 12 %

- 8 ft static bed height in both cases
- Air distributor type ring sparger
- Truncated geometry considered for both cases
- Appropriate boundary conditions applied to maintain solids inventory
- Gas streaming intensity decreases (smaller fluctuations in DP) with an increase in fines content

(Issangya et. al. 2007, Karimipour & Pugsley 2010)

Results: Axial Pressure Gradient Profile

Results: Mean and Std. Dev. of Differential Pressure (DP) across entire bed and 24 inch section

Fig. 1

Fig. 3

Fig. 4

Results: Effect of fines content on fluidization behavior

Std. Dev. of Differential Pressure (DP) across entire bed Case 3: 3 % fines and Case 4: 12 % fines

• Gas streaming intensity decreases (smaller fluctuations in DP) with an increase in fines content. DDPM model qualitatively predicts the trend as observed in experiments.

Results: Animations

Contours of volume fraction of particles

Case 3 Case 4

Summary

- Demonstrated the suitability of modeling platform for dense particulate flows
- Ongoing validation efforts to assess the performance and identify areas for improvement

Eulerian-Eulerian

- The E-E models clearly illustrate the benefits of including size distribution and phase separation through PBM
- In E-E models, typical drag laws do not capture the influence of meso-scales and so the choice of drag law is critical in predicting the correct bed height over long times

Eulerian-Lagrangian

- DDPM model qualitatively captures the differences in fluidization behavior with different bed depths and fines content
- DDPM model is applicable at all volume fractions and is also computationally efficient